Filter by location

Filter by date range

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) (2243)

DOI: 10.15493/DEA.MIMS.06992023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 09 December 2021 to 08 January 2022

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06982023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 09 November to 08 December 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06972023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 08 October to 08 November 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06902023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 07 September to 08 October 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06882023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 07 July to 07 August 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06872023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 07 June to 07 July 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06832023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 07 May to 07 June 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06772023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 13 April to 07 May 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06762023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 12 March to 12 April 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06752023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 11 February to 11 March 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06742023
Raw seawater temperature data from the long-term monitoring of the microhabitats of intertidal invertebrates in Sea Point, 11 February to 07 May 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06732023
Sun exposed temperature data from Sea Point, 03 January to 11 February 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06722023
Sun exposed temperature data from Sea Point, 02 December 2020 to 02 January 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06712023
Raw sun exposed temperature data from Sea Point, 02 December 2020 to 11 February 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06692023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 02 December 2020 to 02 January 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06682023
Raw seawater temperature data from the long-term monitoring of the microhabitats of intertidal invertebrates in Sea Point, 02 December 2020 to 11 February 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.11252023
Raw temperature data for long-term observations of Bottom Temperatures at Songa Mnara, Tanzania (August 2004 - October 2007)

Here we present raw temperatures from Underwater Temperature Recorders (UTRs) located at a depth of 18m off Songa Mnara, Tanzania (09.0545°S 39.6107°E), along the east coast of Southern Africa, between 22 August 2004 and 06 October 2007. Note that the data that falls outside of these dates is not from the deployment. At selected sites around Southern Africa, UTRs have been used to obtain long-term records of bottom temperature in the nearshore environment, at depths ranging from 2m to 34m....

DOI: 10.15493/DEA.MIMS.11242023
Long-term observations of hourly bottom temperatures at Songa Mnara, Tanzania (August 2004 - October 2007)

Here we present processed hourly subsurface temperatures from Underwater Temperature Recorders (UTRs) located at a depth of 18m off Songa Mnara, Tanzania (09.0545°S 39.6107°E), along the east coast of Southern Africa, between 22 August 2004 and 06 October 2007. At selected sites around Southern Africa, UTRs have been used to obtain long-term records of bottom temperature in the nearshore environment, at depths ranging from 2m to 34m. Note that for some deployments, two UTRs were deployed to...

DOI: 10.15493/DEA.MIMS.11212023
Long-term observations of hourly bottom temperatures on the Prince Edward Island shelf at Mooring 2 (May 2022 - April 2023)

Here we present processed hourly bottom temperature from an Acoustic Doppler Current Profiler (ADCP) at location M2 (46.713°S; 37.902°E) on the Prince Edward Island shelf, between 06 May 2022 and 26 April 2023. The South African component of the international South Atlantic Meridional Overturning Circulation project (SAMOC-SA) aims to characterise the time-mean and time-varying components of the SAMOC in the South Atlantic Ocean and monitor the variability of the main Southern Ocean frontal...

DOI: 10.15493/DEA.MIMS.11202023
Long-term observations of daily bottom temperatures on the Prince Edward Island shelf at Mooring 2 (May 2022 - April 2023)

Here we present processed daily bottom temperature from an Acoustic Doppler Current Profiler (ADCP) at location M2 (46.713°S; 37.902°E) on the Prince Edward Island shelf, between 07 May 2022 and 25 April 2023. The South African component of the international South Atlantic Meridional Overturning Circulation project (SAMOC-SA) aims to characterise the time-mean and time-varying components of the SAMOC in the South Atlantic Ocean and monitor the variability of the main Southern Ocean frontal...

DOI: 10.15493/DEA.MIMS.11192023
Long-term observations of hourly bottom temperatures on the Prince Edward Island shelf at Mooring 1 (May 2022 - April 2023)

Here we present processed hourly bottom temperature from an Acoustic Doppler Current Profiler (ADCP) at location M1 (46.770°S; 37.900°E) on the Prince Edward Island shelf, between 09 May 2022 and 26 April 2023. The South African component of the international South Atlantic Meridional Overturning Circulation project (SAMOC-SA) aims to characterise the time-mean and time-varying components of the SAMOC in the South Atlantic Ocean and monitor the variability of the main Southern Ocean frontal...

DOI: 10.15493/DEA.MIMS.11182023
Long-term observations of daily bottom temperatures on the Prince Edward Island shelf at Mooring 1 (May 2022 - April 2023)

Here we present processed daily bottom temperature from an Acoustic Doppler Current Profiler (ADCP) at location M1 (46.770°S; 37.900°E) on the Prince Edward Island shelf, between 10 May 2022 and 25 April 2023. The South African component of the international South Atlantic Meridional Overturning Circulation project (SAMOC-SA) aims to characterise the time-mean and time-varying components of the SAMOC in the South Atlantic Ocean and monitor the variability of the main Southern Ocean frontal...

DOI: 10.15493/DEA.MIMS.11172023
Long-term observations of hourly currents on the Prince Edward Island shelf at Mooring 2 (May 2022 - April 2023)

Here we present processed magnitude and direction of hourly currents throughout the water column (45.2 - 245.2m) from an Acoustic Doppler Current Profiler (ADCP) at location M2 (46.713°S; 37.902°E) on the Prince Edward Island shelf, between 06 May 2022 and 26 April 2023. The South African component of the international South Atlantic Meridional Overturning Circulation project (SAMOC-SA) aims to characterise the time-mean and time-varying components of the SAMOC in the South Atlantic Ocean...

DOI: 10.15493/DEA.MIMS.11162023
Long-term observations of daily currents on the Prince Edward Island shelf at Mooring 2 (May 2022 - April 2023)

Here we present processed magnitude and direction of daily currents throughout the water column (45.2 - 245.2m) from an Acoustic Doppler Current Profiler (ADCP) at location M2 (46.713°S; 37.902°E) on the Prince Edward Island shelf, between 07 May 2022 and 25 April 2023. The South African component of the international South Atlantic Meridional Overturning Circulation project (SAMOC-SA) aims to characterise the time-mean and time-varying components of the SAMOC in the South Atlantic Ocean and...

DOI: 10.15493/DEA.MIMS.11152023
Long-term observations of hourly currents on the Prince Edward Island shelf at Mooring 1 (May 2022 - April 2023)

Here we present processed magnitude and direction of hourly currents throughout the water column (22.96 - 150.96m) from an Acoustic Doppler Current Profiler (ADCP) at location M1 (46.770°S; 37.900°E) on the Prince Edward Island shelf, between 09 May 2022 and 26 April 2023. The South African component of the international South Atlantic Meridional Overturning Circulation project (SAMOC-SA) aims to characterise the time-mean and time-varying components of the SAMOC in the South Atlantic Ocean...