African Coelacanth Ecosystem Programme (ACEP) (17)
Agulhas System Climate Array (ASCA) (4)
Anchovy Recruitment Survey (7)
Bio-optical Investigation of Phytoplankton (15)
Conservation Physiology Programme (104)
Gliders in the Agulhas (GINA) (4)
Gough Island Relief (23)
Hybrid Coordinate Ocean Model (HYCOM) (1)
Integrated Ecosystem Programme: Southern Benguela (IEP: SB) (100)
International Indian Ocean Expedition 2 (IIOE2) (10)
Long-term monitoring of nearshore temperatures around Southern Africa (590)
Marion Island Relief Voyage (57)
National Coastal Climate Change Vulnerability Assessment (5)
Port St Johns CTD and Bathymetry Survey (1)
Shelf Circulation Patterns off Port Edward (40)
South African National Antarctic Expedition (SANAE) (32)
South Atlantic Meridional Overturning Circulation (SAMOC-SA) (223)
South Atlantic Meridional Overturning Circulation Basin-wide Array (SAMBA) (16)
South Coast Moorings and Monitoring Lines Cruise (23)
Southern Ocean Seasonal Cycle Experiment (SOSCEx) (11)
Underwater Temperature Recorder Mooring Network (2)
Walters Shoal (4)
Weather stations (7)
West Coast Cetacean Distribution and Abundance Survey (15)
West Coast Physical Oceanography (10)
Winter Cruise (7)
ANTARCTICA (23)
GOUGH ISLAND (23)
INDIAN OCEAN (673)
SOUTH AFRICA (9)
SOUTH ATLANTIC OCEAN (738)
SOUTHERN OCEAN (22)
ADCP (207)
AWS (12)
CO2 ANALYZERS (2)
CTD (197)
DVS (4)
ECHO SOUNDERS (3)
NISKIN BOTTLES (17)
PIES (46)
PROFILERS (3)
SADCP (48)
SDS (1)
THERMOSALINOGRAPH (83)
UTR (588)
XBT (32)
Sun exposed temperature data from Sea Point, South Africa, 28 September to 12 November 2020
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Raw sun exposed temperature data from Sea Point, South Africa, 28 September to 12 November 2020
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, South Africa, 21 September to 12 November 2020
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Raw seawater temperature data from the long-term monitoring of the microhabitats of intertidal invertebrates in Sea Point, South Africa, 21 September to 12 November 2020
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, South Africa, 13 March to 12 April 2020
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, South Africa, 01 February to 24 February 2020
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, South Africa, 01 January to 31 January 2020
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, South Africa, 02 December to 31 December 2019
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, South Africa, 13 November to 29 November 2019
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Raw seawater temperature data from the long-term monitoring of the microhabitats of intertidal invertebrates in Sea Point, South Africa, 13 November 2019 to 12 April 2020
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Sun exposed temperature data from Sea Point, 01 to 28 September 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Sun exposed temperature data from Sea Point, 01 to 31 August 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Raw sun exposed temperature data from Sea Point, 01 August to 28 September 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 01 to 28 September 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 01 to 31 August 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Raw seawater temperature data from the long-term monitoring of the microhabitats of intertidal invertebrates in Sea Point, 01 August to 28 September 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Sun exposed temperature data from Sea Point, 30 June to 01 August 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Raw sun exposed temperature data from Sea Point, 30 June to 01 August 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 30 June to 01 August 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Raw seawater temperature data from the long-term monitoring of the microhabitats of intertidal invertebrates in Sea Point, 30 June to 01 August 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Sun exposed temperature data from Sea Point, 01 to 30 June 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Raw sun exposed temperature data from Sea Point, 01 to 30 June 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 01 to 30 June 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Raw seawater temperature data from the long-term monitoring of the microhabitats of intertidal invertebrates in Sea Point, 01 to 30 June 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Sun exposed temperature data from Sea Point, 01 May to 01 June 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...