African Coelacanth Ecosystem Programme (ACEP) (20)
Agulhas Bank Boundary Processes (2)
Agulhas System Climate Array (ASCA) (8)
Anchovy Recruitment Survey (16)
Bio-optical Investigation of Phytoplankton (15)
Conservation Physiology Programme (155)
Gliders in the Agulhas (GINA) (13)
Gough Island Relief (23)
Horse Mackerel Hydroacoustic Pilot Survey (2)
Hybrid Coordinate Ocean Model (HYCOM) (1)
Integrated Ecosystem Programme: Southern Benguela (IEP: SB) (124)
International Indian Ocean Expedition 2 (IIOE2) (10)
Long-term monitoring of nearshore temperatures around Southern Africa (862)
Marion Island Relief Voyage (61)
National Coastal Climate Change Vulnerability Assessment (5)
Pelagic Fish Biomass Survey (2)
Pelagic Pre-Recruit Mesopelagic Biomass (2)
Pelagic Pre-Recruit Mesopelagic Biomass Survey (2)
Port St Johns CTD and Bathymetry Survey (1)
Shelf Circulation Patterns off Port Edward (40)
South African National Antarctic Expedition (SANAE) (32)
South Atlantic Meridional Overturning Circulation (SAMOC-SA) (276)
South Atlantic Meridional Overturning Circulation Basin-wide Array (SAMBA) (24)
South Coast Demersal Biomass Survey (8)
South Coast Moorings and Monitoring Lines Cruise (23)
Southern Ocean Seasonal Cycle Experiment (SOSCEx) (11)
Underwater Temperature Recorder Mooring Network (2)
Walters Shoal (4)
Weather stations (13)
West Coast Cetacean Distribution and Abundance Survey (15)
West Coast Hake Biomass Survey (4)
West Coast Physical Oceanography (10)
Winter Cruise (7)
ANTARCTICA (23)
GOUGH ISLAND (23)
INDIAN OCEAN (1004)
SOUTH AFRICA (9)
SOUTH ATLANTIC OCEAN (930)
SOUTHERN OCEAN (44)
ADCP (227)
AWS (12)
CO2 ANALYZERS (2)
CTD (259)
DVS (4)
ECHO SOUNDERS (3)
NISKIN BOTTLES (17)
PIES (73)
PROFILERS (12)
SADCP (48)
SDS (1)
THERMOSALINOGRAPH (134)
UTR (860)
XBT (34)
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 01 May to 01 June 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 14 to 30 April 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 18 March to 14 April 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 01 February to 18 March 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 09 January to 01 February 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 09 December 2021 to 08 January 2022
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 09 November to 08 December 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 08 October to 08 November 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 07 September to 08 October 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 07 July to 07 August 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 07 June to 07 July 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 07 May to 07 June 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 13 April to 07 May 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 12 March to 12 April 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 11 February to 11 March 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Raw seawater temperature data from the long-term monitoring of the microhabitats of intertidal invertebrates in Sea Point, 11 February to 07 May 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Sun exposed temperature data from Sea Point, 03 January to 11 February 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Sun exposed temperature data from Sea Point, 02 December 2020 to 02 January 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Raw sun exposed temperature data from Sea Point, 02 December 2020 to 11 February 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 02 December 2020 to 02 January 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Raw seawater temperature data from the long-term monitoring of the microhabitats of intertidal invertebrates in Sea Point, 02 December 2020 to 11 February 2021
To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...
Raw temperature data for long-term observations of Bottom Temperatures at Songa Mnara, Tanzania (August 2004 - October 2007)
Here we present raw temperatures from Underwater Temperature Recorders (UTRs) located at a depth of 18m off Songa Mnara, Tanzania (09.0545°S 39.6107°E), along the east coast of Southern Africa, between 22 August 2004 and 06 October 2007. Note that the data that falls outside of these dates is not from the deployment. At selected sites around Southern Africa, UTRs have been used to obtain long-term records of bottom temperature in the nearshore environment, at depths ranging from 2m to 34m....
Long-term observations of hourly bottom temperatures at Songa Mnara, Tanzania (August 2004 - October 2007)
Here we present processed hourly subsurface temperatures from Underwater Temperature Recorders (UTRs) located at a depth of 18m off Songa Mnara, Tanzania (09.0545°S 39.6107°E), along the east coast of Southern Africa, between 22 August 2004 and 06 October 2007. At selected sites around Southern Africa, UTRs have been used to obtain long-term records of bottom temperature in the nearshore environment, at depths ranging from 2m to 34m. Note that for some deployments, two UTRs were deployed to...
Long-term observations of hourly bottom temperatures on the Prince Edward Island shelf at Mooring 2 (May 2022 - April 2023)
Here we present processed hourly bottom temperature from an Acoustic Doppler Current Profiler (ADCP) at location M2 (46.713°S; 37.902°E) on the Prince Edward Island shelf, between 06 May 2022 and 26 April 2023. The South African component of the international South Atlantic Meridional Overturning Circulation project (SAMOC-SA) aims to characterise the time-mean and time-varying components of the SAMOC in the South Atlantic Ocean and monitor the variability of the main Southern Ocean frontal...
Long-term observations of daily bottom temperatures on the Prince Edward Island shelf at Mooring 2 (May 2022 - April 2023)
Here we present processed daily bottom temperature from an Acoustic Doppler Current Profiler (ADCP) at location M2 (46.713°S; 37.902°E) on the Prince Edward Island shelf, between 07 May 2022 and 25 April 2023. The South African component of the international South Atlantic Meridional Overturning Circulation project (SAMOC-SA) aims to characterise the time-mean and time-varying components of the SAMOC in the South Atlantic Ocean and monitor the variability of the main Southern Ocean frontal...