Filter by location

Filter by date range

(10)

African Coelacanth Ecosystem Programme (ACEP) (86)

Agulhas Bank Boundary Processes (2)

Agulhas System Climate Array (ASCA) (8)

Anchovy Recruitment Survey (18)

Benguela Current Sources and Transport (BEST 1) (2)

Bio-optical Investigation of Phytoplankton (15)

Cape Canyon Exploration (6)

Conservation Physiology Programme (155)

Current Meter and Sediment Trap Recovery Shelf Chemistry (2)

Gliders in the Agulhas (GINA) (13)

Gough Island Relief (23)

Horse Mackerel Hydroacoustic Pilot Survey (2)

Horse Mackerel Hydroacoustic Survey (2)

Hybrid Coordinate Ocean Model (HYCOM) (1)

Integrated Ecosystem Programme: Southern Benguela (IEP: SB) (124)

International Indian Ocean Expedition 2 (IIOE2) (10)

Long-term monitoring of nearshore temperatures around Southern Africa (872)

Marion Island Relief Voyage (63)

National Coastal Climate Change Vulnerability Assessment (5)

Pelagic Biomass Survey (10)

Pelagic Pre-Recruit Mesopelagic Biomass Survey (4)

Plankton Dynamics (2)

Port St Johns CTD and Bathymetry Survey (1)

Shelf Circulation Patterns off Port Edward (40)

South African National Antarctic Expedition (SANAE) (32)

South Atlantic Meridional Overturning Circulation (SAMOC-SA) (286)

South Atlantic Meridional Overturning Circulation Basin-wide Array (SAMBA) (24)

South Coast Demersal Biomass Survey (13)

South Coast Moorings and Monitoring Lines Cruise (23)

Southern Ocean Seasonal Cycle Experiment (SOSCEx) (11)

Underwater Temperature Recorder Mooring Network (2)

Walters Shoal (4)

Weather stations (13)

West Coast Cetacean Distribution and Abundance Survey (15)

West Coast Hake Biomass (57)

West Coast Physical Oceanography (10)

Winter Cruise (7)

DOI: 10.15493/DEA.MIMS.07092023
Sun exposed temperature data from Sea Point, 01 February to 18 March 2022

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.07052023
Sun exposed temperature data from Sea Point, 09 January to 01 February 2022

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.07042023
Sun exposed temperature data from Sea Point, 09 December 2021 to 08 January 2022

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.07032023
Sun exposed temperature data from Sea Point, 09 November to 08 December 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.07022023
Sun exposed temperature data from Sea Point, 08 October to 08 November 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06952023
Sun exposed temperature data from Sea Point, 07 September to 08 October 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06942023
Sun exposed temperature data from Sea Point, 07 August to 07 September 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06932023
Sun exposed temperature data from Sea Point, 07 July to 07 August 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06922023
Sun exposed temperature data from Sea Point, 07 June to 07 July 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06852023
Sun exposed temperature data from Sea Point, 07 May to 07 June 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06812023
Sun exposed temperature data from Sea Point, 13 April to 07 May 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06802023
Sun exposed temperature data from Sea Point, 12 March to 12 April 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.06792023
Sun exposed temperature data from Sea Point, 11 February to 11 March 2021

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/dea.mims.26052358
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, South Africa, 21 September to 12 November 2020

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/dea.mims.26052355
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, South Africa, 01 February to 24 February 2020

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/dea.mims.26052354
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, South Africa, 01 January to 31 January 2020

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/dea.mims.26052353
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, South Africa, 02 December to 31 December 2019

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/dea.mims.26052352
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, South Africa, 13 November to 29 November 2019

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.07672023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 4 April to 9 May 2023

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.07622023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 28 March to 4 April 2023

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.07612023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 27 February to 27 March 2023

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.07472023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 27 January to 27 February 2023

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.07432023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 28 December 2022 to 27 January 2023

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.07382023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 28 November to 28 December 2022

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...

DOI: 10.15493/DEA.MIMS.07372023
Seawater temperature in the microhabitats of intertidal marine invertebrates in Sea Point, 27 October to 27 November 2022

To better understand the physiological effects of marine invertebrates to changing environmental conditions, long-term monitoring which captures the natural variability of environmental parameters is required. In this way, experimental findings can be related back to field conditions, and better predictions can be made as to how marine invertebrates, particularly in the harsh intertidal, will fair with rising temperature. In May 2020, Cape Sea Urchins, Parechinus angulosus, were collected...